For every company in America, there are thousands of different variables that can positively or negatively affect its finances. Today we will focus on leveraging Decomposition Trees, Anomaly Detection, Key Influencers Charts to turn your data into strategic insights.

Labor costs, logistics, customer retention, partnerships and more all affect the day-to-day grind to keep a business afloat. And all of them come with their own unique problems to solve.

There are thousands of variables out there. And it’s important to understand how each engages with one another in order to optimize efficiency.

This is where AI and machine learning come in — particularly in the case of data visualization.

On a simple level, data visualization illustrates stats such as sales per month, KPI goals to hit, and revenue coming from different sections of a company.

And while this may show you what happened, it doesn’t paint the whole picture.

When you add AI and machine learning to these visualizations, you get a better idea of why exactly your figures are the way they are.

And that’s what I want to show you today.

There are dozens of tools out there that allow executives to make critical decisions including Tableau, Qlik, and Looker.

Today. I’m going to focus particularly on Microsoft Power BI and illustrate how you can apply AI and machine learning to its already existing visuals.

The AI Models

Time Series Models

Let’s say you’re looking at a sales chart from the year broken down by month. A normal line or bar chart will show you how much revenue came in monthly and will stop at the last month’s sales.

This is where AI changes everything.

Time series models allow you to predict future sales based on historical data and factors.

It uses a slew of different variables that would influence a metric like sales revenue and can give you an idea of where your future revenue will land in the coming months.

Data like seasonality, market trends and sales growth all affect revenue. And understanding these variables ahead of time can impact how to make crucial decisions.

This is within certainty, and the Time Series Model will consider that when predicting the future.

For instance, in a line graph, the area around your future line will be shaded to show where your revenue could end up.

Knowing this can help you avoid overspending or underutilizing the resources that you have at your disposal.

Regression Analysis

Next, let’s say that you want to answer the question of how much money is to be spent on marketing, and how this money spent affects sales.

Usually this can be easily seen on something like a scatterplot or bubble chart.

But with so many data points, it can be hard to see exactly where the optimal level would be.

With regression models, it would be able to give you further analysis into this, as it would analyze your data, and allow you to plot a proper regression trend line. This would give you an idea of exactly how much one variable, like marketing spending, affects another variable like sales revenue.

Furthermore, just like time series models, you can use regression models to predict future outcomes and have an idea of where you will end up depending on what actions you take.

The difference is that time series models depend on ordered data and time. Regression models instead focus on independent variables. This then allows you to see the result of variables that you haven’t tried yet, such as increasing marketing spending even more than you have in the past.

Clustering Analysis

Businesses often deal with a wide range of clients that can differ based on their behavior, demographics or purchase history.

Taking these different variables into consideration, you can use clustering to spot trends in graphs that may not be apparent at first glance.

On a scatterplot, for instance, clustering analysis would be able to circle and identify similar customers and show you how they trend, like the visual below:

The different circled groups would represent whatever variable links the grouped individuals together such as age or buying frequency. In this way, you could target heavy buyers with more marketing or cater your product to a certain age demographic if you see that one is buying more than another.

Unique AI-Powered Visuals

Our AI tools are best used when they complement key metrics that need to be considered. With Power BI, you can use these visuals to better help paint a picture of why things are happening.

On top of adding this AI-driven data to normal charts, Power BI offers some unique AI-powered visuals that can help influence optimal decision making.

Key Influencers Chart

Let’s say, for instance, you are trying to understand what causes the most customer complaints.

Using a key influencers chart gives you insight into that question along with exactly how much each variable is responsible.

As you can see in the chart below, the number one influence is the type of customer, followed by a slew of different variables like theme type, company size and more:

Decomposition Trees, Anomaly Detection, Key Influencers Charts in Power BI can turn your data into strategic insights.

What’s even better is that you can drill down into each topic. In doing so on the number one influencer, Role in Org is consumer, you can see that for this company, administrator is right behind consumer, and publisher is well below the other two:

Key Influencers Charts, Decomposition Trees, and Anomaly Detection in Power BI can turn your data into strategic insights.

This kind of insight presented in a quick, easy-to-understand manner is huge when it comes to decision making and can give you a big advantage.

Of course, this is just one of the questions you can answer with a key influencers visual. Backorder likelihood, sales revenue, credit risk and more can be answered with the power of AI.

Decomposition Trees

Imagine that you are the head of a medical equipment company, and you are trying to tackle bringing down your percentage of backorders.

Decomposition trees exist so you can find the root of a problem by drilling down on a huge amount of data and categories.

Take the image below as an example:

You can see from the image above that items who have intermittent demands are most likely on backorder from warehouse #0477.

On top of that, if you click a different route, the tree will recalculate your path and create a new set of data for you to look at.

As you can see in the image below, the cardiovascular products are much more delayed from Distribution Center A than B:

Knowing where exactly a problem lies allows you to make quick and efficient decisions. For instance, if you were partnered with one of these warehouses and found that it accounted for 80% of your backorders in one of your products, it would make sense to find a new partner that is more efficient in handling that product.

Anomaly Detection

When looking at sales from the year, there can sometimes be strange unexplained spikes in revenue. When this occurs, it is best to know exactly why this happened so proper action can be taken.

This is where AI comes in with its anomaly detection abilities.

Take a look at the image below:

Anomaly Detection in Power BI helps you get actionable insights with your data!

Anomaly Detection in Power BI helps you get actionable insights with your data!

That spike in September should be a red flag. And should trigger someone looking into why such a rise in revenue happened on that day.

Using Power Bi’s anomaly finder tool, you can add variables for it to take into account and have it give out a possible explanation for the strange day in sales.

In this case, the number one cause for this anomaly had to do with the ‘Region – West’ category. This could mean that either a client from the West region made a large purchase or that many individual customers did on that day.

Using this anomaly feature gives you a good starting point on finding out exactly why one day was very much unlike the others.

Tap Into AI’s Power Today

As we can see, the different Machine Learning and AI visualizations allow you gain an incredible amount of insight. And with this knowledge at your side, your ability to answer critical questions improves massively.

Its ability to identify problems, and identify unseen trends are unmatched. AI is turning industries upside down with its insight, and if you haven’t yet tapped into its potential yet, you’re missing out.

Contact us to start a discussion to see if ProcureSQL can guide you along Machine Learning and AI journey.

 

Microsoft Entra Authentication is A Superior Alternative to SQL Server Authentication

Securing data access is paramount for organizations of any size. Nobody wants to be the following data security leak that goes viral. Adopting robust authentication methods that enhance security, streamline user experience, and simplify management is crucial for decision-makers. Today, I write about how you could utilize Microsoft Entra ID to improve your database security footprint.

ProcureSQL recommends that Microsoft Entra ID replace traditional SQL authentication for Azure SQL Databases and Azure Managed Instances. Microsoft Entra ID offers benefits that address the shortcomings of SQL authentication.

What is SQL Server Authentication?

At the beginning of SQL Server, there was Windows Authentication and SQL Server Authentication. SQL Server Authentication is known as SQL Authentication. SQL Authentication allows users to connect with a username and password. SQL Authentication was helpful in environments where users were not part of a Windows domain or when applications needed to connect without using Windows credentials.

The Pitfalls of SQL Server Authentication

Here is why SQL authentication is inadequate:

Security Vulnerabilities

SQL authentication relies on username and password combination stored within the instance. This approach presents several security risks:

Password Attacks

SQL-authenticated accounts are susceptible to brute-force and dictionary attacks. If you have weak passwords, you rotate them infrequently; the bad guys can break through eventually.

Credential Storage

Passwords are often stored in connection strings or configuration files, increasing the risk of exposure.

Limited Password Policies

Most people don’t even implement SQL Server’s native password policy enforcement for SQL-authenticated accounts. Regardless, it is less robust than that of modern identity management systems.

Management Overhead

Decentralized Account Management

Every Azure Managed Instance or Azure SQL database requires separate account management. Managing all these accounts per instance or database increases the administrative burdens and the risk of inconsistencies.

Password Rotation Challenges

Implementing regular password changes across multiple databases and all their applications is complex and error-prone.

Wouldn’t it be nice if password rotation was in a single place?

The Microsoft Entra ID Authentication Advantage

Microsoft Entra authentication addresses these issues and significantly improves several key areas:

Enhanced Security

Centralized Identity Management

Microsoft Entra ID is a central repository for user identities, eliminating the need for separate database-level accounts per instance or database. This centralization reduces the attack surface and simplifies security management.

Robust Password Policies

Entra ID enforces strong password policies, including complexity requirements and regular password rotations. It also maintains a global banned password list, automatically blocking known weak passwords.

Multi-Factor Authentication (MFA) Support

The last thing we want to see is another data breach due to MFA not being enabled. Microsoft Entra authentication seamlessly integrates with Microsoft Entra MFA, adding an extra layer of security. Users can be required to provide additional verification, such as a phone call, text message, or mobile app notification.

Advanced Threat Protection

Microsoft Entra ID includes sophisticated threat detection capabilities that identify and mitigate suspicious login attempts and potential security breaches.

Improved Access Management

Role-Based Access Control (RBAC)

Entra ID allows for granular permission management through Azure RBAC, enabling administrators to assign specific database roles and permissions to users and groups.

Group Memberships

Administrators can create groups, automating access management as users join, move within, or leave the organization. Is it ideal to deactivate a user’s Entra ID account only and deactivate access everywhere when they leave?

Conditional Access Policies

Entra ID supports conditional access, allowing organizations to define conditions under which access is granted or denied. Examples can include users, device compliance, or network location.

Seamless Integration with Azure Services

Microsoft Entra authentication works harmoniously with other Azure services. Use managed identities for your service resources to simplify access management across the Azure ecosystem. Microsoft Entra Managed Identities eliminates the application needing a password similar to the Group Managed Service Accounts (gMSA) in Active Directory on-premise.

Streamlined User Experience

Single Sign-On (SSO)

Users can access Azure SQL databases using their organizational Microsoft Entra credentials, eliminating the need to remember multiple credentials.

Self-Service Password Reset

Entra ID offers self-service password reset capabilities to reduce the burden on IT helpdesks and the response to resolution time, improving user productivity.

Reduced Password Fatigue

Centralizing authentication simplifies password management for all users. Centralizing authentication results in better password management and reduced risk of using the same or similar passwords.

Compliance and Auditing

Comprehensive Audit Logs

By logging authentication events, Microsoft Entra ID offers improved visibility into user access patterns and potential security incidents.

Regulatory Compliance

Entra password authentication helps organizations meet regulatory requirements, such as GDPR, HIPAA, and PCI DSS, by providing strong authentication and detailed audit trails.

Integration with Azure Policy

Organizations can enforce compliance at scale by defining and implementing Azure Policies that govern authentication methods and access controls.

Implementation Considerations

While the benefits of Microsoft Entra Authentication are clear, decision-makers should consider the following when planning a migration:

Hybrid Environments

For organizations with on-premises Active Directory, Microsoft Entra Connect can synchronize identities, enabling a smooth transition

Application Compatibility

Ensure all applications connecting to Azure SQL databases support Microsoft Entra Authentication methods.

Training and Change Management

Plan for user education and support to ensure a smooth transition from SQL Authentication to Entra password authentication.

Gradual Migration

Consider a phased approach, migrating critical databases first and gradually expanding to the entire environment.

Final Thoughts

As information technology leaders, moving from SQL Authentication to Microsoft Entra Authentication for Azure SQL databases and Managed Instances is strategic. This transition addresses the security vulnerabilities and management challenges of SQL Authentication and paves the way for a more secure, compliant, and user-friendly database access experience. Adopting Microsoft Entra Authentication for Azure SQL databases is not just a best practice—it’s necessary for forward-thinking IT leaders committed to safeguarding their organization’s digital future in Azure.

About ProcureSQL

ProcureSQL is the industry leader in providing data architecture as a service to enable companies to harness their data to grow their business. ProcureSQL is 100% onshore in the United States and supports the four quadrants of data, including application modernization, database management, data analytics, and data visualization. ProcureSQL works as a guide, mentor, leader, and implementor to provide innovative solutions to drive better business outcomes for all businesses. Click here to learn more about our service offerings.